Computes population-weighted greenspace fraction or human exposure to greenspace based on a population-weighted exposure model (Chen et al., 2022), using population data from the Global Human Settlement Layer (GHSL; Pesaresi et al., 2024). See Details for the underlying method and assumptions.
Usage
compute_exposure(
r = NULL,
res = c(10, 10),
pop_year = 2020,
radius = 500,
grid_size = NULL,
height = FALSE,
pop_out = FALSE,
quiet = TRUE
)Arguments
- r
A SpatRaster with single/multiple greenspace layer(s), either fractional or binary (where non-green = 0 and green = 1), typically the output from
get_gsdc(),get_esa_wc(), orget_tile_green().- res
numeric vector of length 2. The actual spatial resolution (in meters). Default is
c(10, 10).- pop_year
numeric. Year of the GHSL dataset to use. Must be one of: 2015, 2020, 2025, or 2030. Default is 2020.
- radius
numeric. Buffer radius (in meters) used for local averaging. Default is
500.- grid_size
numeric. Optional. If provided, output is aggregated to grid cells of this size (in meters) and returned as an
sfobject.- height
logical. Whether to compute greenspace volume for population-weighted greenspace fraction or human exposure to greenspace using Meta's global canopy height map (Tolan et al., 2024). (The default is FALSE)
- pop_out
logical. Whether return population layer.
- quiet
logical. Whether show progress bars for some process.
Value
SpatRaster or sf. A SpatRaster (if grid_size is NULL) with
layers pwgf_*, or an sf object with columns pwge_* representing
population-weighted greenspace exposure values aggregated to each grid polygon.
Details
This function implements the population-weighted greenspace exposure (PWGE) model:
Start with a population raster. Each pixel \( i \) has a population value \( P_i \).
Create a circular buffer of radius \( d \) around each pixel center.
For each buffer, calculate greenspace fraction: $$G_i^d = \frac{\text{Area of greenspace within buffer}}{\text{Total buffer area}}$$
Repeat for all \( i = 1, 2, ..., N \) grid cells.
Compute overall exposure: $$GE^d = \frac{\sum_i P_i \cdot G_i^d}{\sum_i P_i}$$
References
Chen, B., Wu, S., Song, Y. et al. Contrasting inequality in human exposure to greenspace between cities of Global North and Global South. Nat Commun 13, 4636 (2022). https://doi.org/10.1038/s41467-022-32258-4
Pesaresi, M., Schiavina, M., Politis, P., Freire, S., Krasnodębska, K., Uhl, J. H., … Kemper, T. (2024). Advances on the Global Human Settlement Layer by joint assessment of Earth Observation and population survey data. International Journal of Digital Earth, 17(1). https://doi.org/10.1080/17538947.2024.2390454
Tolan, J., Yang, H. I., Nosarzewski, B., Couairon, G., Vo, H. V., Brandt, J., ... & Couprie, C. (2024). Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sensing of Environment, 300, 113888.
Examples
sample_data <- terra::rast(system.file("extdata", "detroit_gs.tif", package = "greenSD"))
pwgf <- compute_exposure(
# r = sample_data,
pop_year = 2020,
radius = 1500
)
